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The X-ray analysis of (6R,7aS)-6-(tert-butyl-dimethylsilanyl-

oxy)-1-hydroxy-2-phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one,

C19H27NO3Si, revealed a diffraction pattern which is typical

for modulated structures: strong Bragg peaks surrounded by

weaker reflections which cannot be indexed with the same

three reciprocal lattice vectors that are used to describe the

strong peaks. For this class of crystal structures the concept of

superspace has been developed which, however, for many

crystallographers still constitutes a Gordian Knot. As a

possible tool to cut this knot the crystal structure of the

above-mentioned tetrahydropyrrolizinone derivative is

presented as an illustrative example for handling and

describing the modulated structure of a typical pharmaceutical

(i.e. molecular) compound. Having established a working

knowledge of the concepts and terminology of the superspace

approach a concise and detailed description of the complete

process of peak indexing, data processing, structure solution

and structure interpretation is presented for the incommen-

surately modulated crystal structure of the above-mentioned

compound. The superspace symmetry applied is P21(�0�)0;

the (incommensurate) q vector components at 100 K are � =

0.1422 (2) and � = 0.3839 (8).
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1. Introduction

Together with quasicrystals and composite crystals incom-

mensurately modulated structures constitute the category of

aperiodic crystals. Since modulated structures will be

discussed in detail over the course of this paper the interested

reader is referred to ‘An elementary introduction to super-

space crystallography’ by van Smaalen (2004) for a compre-

hensible description of quasicrystals and composite crystals.

The diffraction patterns of modulated structures are char-

acterized by the existence of additional Bragg reflections so

that an integer indexing with three indices hkl is not possible;

instead, 3 + d indices are required (d = 1, 2 or 3). The necessity

for using four or more indices must be understood as a loss of

periodicity in three dimensions. To restore the periodicity, the

concept of higher-dimensional superspace was developed (de

Wolff, 1974, 1977). Atoms are no longer points in space, but

are envisioned as d-dimensional atomic domains (Janner &

Janssen, 1977).

The theoretical foundation for the superspace approach is

now well established (van Smaalen, 2007). Furthermore,

considerable effort has been put into making JANA2006, a

crystallographic computing system that can conveniently

handle the data and structures of modulated compounds

(Petricek et al., 2006), available and user-friendly.

However, for the majority of the crystallographic commu-

nity many of the concepts and terms used in this context are



still not easily accessible because superspace descriptions tend

to be rather mathematical and based on inorganic examples.

In this manuscript a more practical approach to this topic is

presented, based on an illustrative example from a pharma-

ceutical crystallographic service lab. The manuscript is divided

into three main sections: in the first section a working

knowledge of modulated structures will be established and

key terms such as modulation vector, atomic modulation

function, atomic domain etc. will be introduced and explained.

After a brief excursion into the historical and recent devel-

opments in the field of aperiodic structures this working

knowledge will be illustrated in the third section where the

complete process of peak indexing, data processing, structure

solution and structure interpretation for an incommensurately

modulated structure is presented for the crystal structure

of (6R,7aS)-6-(tert-butyl-dimethyl-silanyloxy)-1-hydroxy-2-

phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one, C19H27NO3Si.

1.1. Modulated structures – a first definition

Most crystal structures are periodic in three dimensions and

show a diffraction pattern that can be indexed with three

integer numbers (Fig. 1). Modulated structures can be derived

from those structures: here atoms, groups of atoms or even

whole molecules are shifted or rotated with respect to their

neighbours such that the three-dimensional translational

symmetry, often considered as the characteristic feature of a

crystal structure, is destroyed. These shifts and rotations in

modulated structures, however, are not arbitrary; they follow

distinct rules and within these distortions (or better: modu-

lations) there is additional periodicity which can mathemati-

cally be described by so-called atomic modulation functions

(AMFs). AMFs can be harmonic (continuous) and therefore

be expressed by a sine/cosine combination or they may be

discontinuous, in which case crenel or sawtooth functions are

needed for their description (Fig. 2; Petricek et al., 1995).

Based on the periodicity of the modulation wave a distinction

can be made between commensurately modulated structures

(periodicity matches an integral number of lattice translations

of the basic cell) and incommensurately modulated structures

(periodicity does not match an integral number of lattice
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Figure 1
Two-dimensional schematic representation of a hypothetical crystal
structure that is periodic in three dimensions and its schematic diffraction
pattern, indexed with three integer numbers based on the reciprocal
lattice vectors a*, b* (not shown) and c*. Lattice/unit cells in light grey.

Figure 2
Schematic representation of three manifestations of a modulated
structure with lost translational symmetry along the a axis. All three
drawings in (a) are derived from the periodic structure shown in Fig. 1 by
shifting or rotating the molecules. The atomic modulation functions
suitable for the description of the modulated atomic positions are shown
as an overlay: in the top drawing the molecules are shifted up and down
parallel to c in a continuous harmonic (sinusoidal) way (red curve); in the
middle drawing the molecules are rotated around an axis parallel to a, the
rotation angle can be described using a sawtooth function (blue) with a
discontinuity between molecules 8 and 1; in the bottom drawing the
molecule adopts two different orientations which can be described by a
step-like crenel function (green). Note that the modulation proceeds only
along a, the c direction is not affected. (b) In the associated schematic
diffraction pattern additional reflections (grey circles) appear along a*.
The number of satellite reflections and their intensity distribution depend
on the strength and nature of the modulation. For simplicity, only one
diffraction scheme was drawn.



translations of the basic cell and is therefore incommensurate

with the periodic basic structure).

Due to the periodic character of the modulation, additional

sharp peaks appear in the diffraction pattern, just as the Bragg

reflections produced by a three-dimensional crystal are a

result of the periodic terms in the structure factor equation.

These additional peaks are referred to as satellite reflections

and usually they are weaker than the main reflections. The

satellite reflections can lie parallel to one reciprocal axis, but

they do not have to. It should be emphasized that modulated

structures are not disordered but have long-range order which

is reflected in those discrete additional peaks rather than in

diffuse streaks. For displacive modulations as described above

(i.e. the atomic positions are affected), the number of satellite

reflections that can be observed depends on the amplitude of

the AMFs or, in other words, on the degree of distortion/

modulation present in the three-dimensional crystal structure.

The stronger the modulation, the stronger the satellite

reflections and also the higher the order of the satellite

reflections that have measurable intensity (see x1.2.3).

Even though the distribution of satellite reflections in

reciprocal space is not arbitrary, they cannot be described with

the same three reciprocal lattice vectors that allow an integer

indexing of the main reflections. Any attempt to do so results

in non-integer values for h and/or k and/or l (Fig. 3). For an

incommensurately modulated structure there is not any set of

three vectors that allows an integer indexing of all (main and

satellite) reflections.

1.2. Handling the diffraction pattern of modulated structures

The diffraction pattern of a modulated structure (strong

main reflections surrounded by weaker satellite reflections)

can be approached in three different ways, two of which are

based on a description in the traditional three-dimensional

space, and one that is not. Since the structure, however, is not

periodic in three dimensions (except for commensurate cases)

any three-dimensional approach can only be regarded as an

approximation. The three-dimensional approaches shall be

mentioned nonetheless since the results may contain valuable

information that can be used at a later stage (space-group

determination in superspace, identification of groups with

strongest modulation, type of AMF to describe the modula-

tion etc.).

1.2.1. Basic cell and average structure. The first option is to

ignore the weak satellite reflections altogether and concen-

trate on the main reflections. The indexing procedure then

delivers a so-called basic cell (sometimes also referred to as a

subcell) with a volume that can accommodate a realistic

number of the molecule under study (1, 2, 3 etc. ). In the three-

dimensional crystal structure using the main reflections only

corresponds to averaging the contents of several unit cells and

looking at a structure which is commonly referred to as the

average structure. It is usually characterized by large aniso-

tropic atomic displacement parameters (ADPs) as well as

unrealistic bond lengths and bond angles. In the hypothetical

structure of Fig. 2, for example, the averaging would include

eight unit cells (Fig. 4). The inherent disadvantage of this

approach is that a certain amount of information provided by

the diffraction pattern, i.e. satellite intensity, is neglected.

1.2.2. Supercell and superstructure. The second way of

handling the diffraction pattern is to drop the distinction

between main and satellite reflections and to use all reflections

equivalently for indexing (Fig. 5). This results in a smaller

reciprocal unit cell and a reciprocal lattice where, depending

on the maximum order of the satellite reflections that are

observed, many reciprocal lattice points may be empty, i.e.

have no observable intensity. In direct space the unit cell is

accordingly larger and is commonly referred to as a supercell.

The resulting crystal structure is called a superstructure and is

characterized by a large number of independent molecules in

the asymmetric unit (Z0; Z0 = 8 in

the example of Fig. 5). In

incommensurate cases where the

positions of the satellite reflec-

tions do not perfectly fit the grid

of the supercell lattice a defor-

mation of reciprocal space has to

be accepted which usually

manifests itself in poor agree-

ment factors, large standard

deviations of refined parameters,

split atoms, large ADPs etc. In
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Figure 3
Indexed schematic diffraction pattern of the modulated structure of Fig. 2,
main reflections black, satellite reflections grey. Indices for main
reflections are based on the lattice vectors a*, b* (not shown) and c*.
Note that an integer indexing for the satellite reflections is not possible
using those vectors. The deviations from the indices of the closest main
reflection are (�0.25, 0, 0) for the marked satellite reflection at the top
and (+0.25, 0, 0) for that at the bottom.

Figure 4
Neglecting satellite reflections and solving the structure in the basic cell corresponds to averaging the
contents of the eight unit cells shown in either of the top rows of Fig. 2(a) by shifting the molecules parallel to
a into one cell (H atoms omitted for clarity; the molecules from Fig. 2 have been moved towards each other
already). Consequently, the resulting average structure is characterized by large displacement ellipsoids and,
in the case of a strong modulation, also by unrealistic geometric parameters.



such cases the term superstructure approximation would be

more appropriate (see also x1.4).

For commensurate cases the description as a (three-

dimensional) superstructure constitutes a valid approach (e.g.

Hao et al., 2005; Siegler et al., 2008) and can even be used in

combination with a (higher-dimensional) superspace treat-

ment (Schmid & Wagner, 2005).

1.2.3. Moving into superspace. In the third approach, too,

all reflections are used, but the distinction between main and

satellite reflections is maintained. In a first step the reciprocal

unit cell is established using the main reflections (cf x1.2.1).

The second step makes use of the fact that the distribution of

satellite reflections in reciprocal space is not arbitrary; they

can be divided into groups in which they are equidistant not

only from each other but also from the main reflection to

which they belong. This systematic distribution allows the

definition of a fourth vector, the so-called modulation wave-

vector q, which describes the satellite reflections with respect

to their main reflection. Now every satellite peak can be

uniquely identified as being n�q (n = �1, �2, . . . ) away from

its main reflection, and one speaks of the nth-order satellite

reflection of this main reflection. This manuscript will be

restricted to four-dimensional cases, i.e. one modulation

wavevector q. The theory for five- or six-dimensional cases,

where a second or even a third set of satellite reflections

requires the use of one or two additional vectors, can be

derived accordingly. Since five- and six-dimensional cases,

however, occur mainly with higher symmetry (hexagonal,

cubic) and a standardized treatment is still in the process of

being developed, they are beyond the scope of this intro-

ductory guide.

Within the framework of the three reciprocal lattice vectors

a*, b* and c*, which describe the basic cell, the modulation

wavevector q can be expressed only with the help of fractional

components: q = �a* + �b* + �c*. In other words, the

components of q are given with respect to the basis vectors of

the reciprocal lattice of the basic cell or average structure.1

Please note that the number of non-zero components of q is

not related to the dimensionality of the modulation, which is

defined by the number of q vectors necessary for the

description of reciprocal space. Depending on the rationality

of �, � and � there is now a second way (cf. x1.1) to classify

modulated structures as commensurate (all components

rational) or incommensurate (at least one of the components

irrational). In direct space commensurate cases are char-

acterized by a supercell in which all lattice parameters are

integer multiples (1, 2, . . . , n) of the lattice parameters of the

basic cell. In practice, however, it is often not easy to distin-

guish between commensurate and incommensurate cases,

especially when the multipliers involve larger integers and the

differences between a commensurate and an incommensurate

approach disappear.

Working with one modulation wavevector q implies a

transition into four-dimensional space (cf. x1.2.4) and every

reflection of the diffraction pattern can now be described in a

unique way by four integer indices h, k, l and m. This higher-

dimensional concept affects all subsequent steps of structure

analysis and therefore will be discussed in detail in connection

with the sample structure in x3. A schematic illustration of the

relation between superspace and three-dimensional space is

given in Fig. S1 of the supplementary material.2

1.2.4. The definition of reciprocal superspace. It is difficult

to envision the fourth dimension introduced in the preceeding

section by looking at the q vector alone because q itself is only

part of the definition of reciprocal superspace. To illustrate the
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Figure 5
Using main and satellite reflections equivalently results in a large unit cell
(light grey) with a0 = 8�a or, in reciprocal space, a0* = 1/8�a*. Note that
unless satellite reflections up to higher orders are observed, numerous
reciprocal lattice points are empty (b). This holds especially if the satellite
reflections are not along one reciprocal axis but are located in a plane
(e.g. the a*c* plane, cf. x3).

1 The q vector components �, � and � have to be distinguished from the unit-
cell parameters �, � and �. Alternative notations such as �1, �2, �3 can be
found in the literature (van Smaalen, 2007). In this manuscript, however, the
nomenclature used in Vol. C of the International Tables of Crystallography (�,
� and �) will be followed (Janssen et al., 2006).
2 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: BK5084). Services for accessing these data are described
at the back of the journal.



relationship between three-dimensional reciprocal space and

reciprocal superspace it is more convenient to focus on one

line of the diffraction pattern shown in Fig. 6(a). In this figure

q is chosen to be parallel to a* (i.e. only the � component of q

is non-zero). The additional fourth dimension is defined by the

unity vector e�4 (Fig. 6b) which is perpendicular to a* in the

plane of the paper (e�4 is also perpendicular to b* and c*, which

are not shown in Fig. 6). The linear combination of e�4 and q

defines the fourth reciprocal lattice vector, a�s4 (cf. x1.3).

Extending this vector a�s4 illustrates that every satellite

reflection along the (three-dimensional) reciprocal lattice

vector a* can now be understood as a projection of a reflection

along the reciprocal superspace vector a�s4 (dotted lines), or, in

other words: q is the result of the projection of the additional

dimension a�s4 into three-dimensional reciprocal space R*.

1.3. Superspace and direct space – where are the atoms?

Up to this point the terminology of superspace has been

used in conjunction with reciprocal space only. Now, how can

the structure of an aperiodic crystal in direct space be

imagined? Where are the atoms? And what does it mean that

‘ . . . the aperiodic structure in real space is interpreted as a cut

through the (3 + d)-dimensional superspace description’

(Janner & Janssen, 1977)?

Before answering these questions, the following convention

shall be introduced: the vectors a, b and c and their respective

coordinates x, y and z used in classical three-dimensional

crystallography will now be denoted a1, a2 and a3, and the

coordinates as x1, x2 and x3. That way the notation can easily

be extended to an arbitrary number of dimensions. Axes and

coordinates in an n-dimensional superspace will then be

referred to as as1, as2, as3, . . . , asn and x1, x2, x3, . . . , xn (just as

the reciprocal superspace direction in x1.2.4 was denoted a�s4).

Since in the superspace approach the additional dimensions

are defined to be perpendicular to all three dimensions of

physical space, it is impossible to illustrate all four dimensions

on paper. One has to use projections (in reciprocal space) or

sections (in direct space) of the higher-dimensional space, just

as one would draw a two-dimensional projection of a three-

dimensional crystal structure on graph paper. This way the

complexity of four-dimensional space can be reduced by

drawing two-dimensional sections consisting of one of the

three principal axes (as1, as2 or as3) and the axis that runs

parallel to the fourth dimension.

Using this technique, a hypothetical four-dimensional (or

better: (3 + 1)-dimensional) modulated structure with one

atom in the unit cell shall now be considered (Fig. 7). In the

(D + d) nomenclature the first number D refers to the

dimensions in physical space and the second number d to the

dimensions in additional space. As mentioned above, the

illustration is simplified by drawing four unit cells in a (1 + 1)-

dimensional superspace section.

To facilitate recognizing the three-dimensional crystal

structure in the superspace section that will be described in

Fig. 7(c) a periodic one atom structure is shown first (Fig. 7a).

In the aperiodic variant below (Fig. 7b) the atoms have been

shifted from their original positions (small black circles) and

the translational symmetry from Fig. 7(a) is lost: the distance

between P and P0, for example, is smaller than the distance

between P0 and P00.

The periodic superspace structure (Fig. 7c) is now defined

by two basis vectors as1 (or as2 or as3) and as4. This vector as4 is

perpendicular to the corresponding three-dimensional axis a1

(if as1 is chosen) and the angle between as1 (superspace) and a1

(three-dimensional space) is defined by the q-vector compo-

nent �: tan ða1; as1Þ ¼
�
ja1j

. In (3 + 1)-dimensional superspace

atoms can no longer be envisioned as points in space. Instead

they have to be understood as one-dimensional objects, the so-

called atomic domains, along the fourth dimension and they

are represented by a curve (mathematically: the atomic

modulation function, AMF) which is periodic along as4. The

shape of the AMF has to be determined experimentally during
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Figure 6
Four-dimensionally indexed diffraction pattern of a hypothetical
modulated structure (a). The vectors a* and c* which define the basic
cell are derived from the positions of the main reflections. The additional
vector q, reaching from the main reflection to the satellite, can be
expressed in fractions of those basic vectors: in the present example q =
0.125�a* + 0�b* + 0�c*. Note that by introducing only one additional
vector it is possible to uniquely index all reflections with four integer
numbers. The fourth index also reveals the satellite order: the marked
satellite reflection at the top is the minus second-order satellite reflection
of the main reflection 3 0 2. (b) Diffraction pattern generated by a one-
dimensionally modulated crystal. The reflections (green circles) along a�s4

(defined by the linear combination of e�4 and q in the plane of the paper,
see x1.2.4) are projected as satellite reflections (grey circles) onto R*, the
reciprocal three-dimensional space in which the reciprocal lattice vectors
a*, b* and c* (not shown) are defined (see also supplementary material
Fig. S1).



structure solution and refinement. The same holds for the

AMFs in the sections (as2, as4) and (as3, as4). Note that in the

two dimensions shown in Fig. 7(c) the AMF does exhibit

translational symmetry, or, in more general words: within the

superspace approach the additional dimensions are intro-

duced to recover translational symmetry and the structure that

is aperiodic in three dimensions becomes periodic in higher-

dimensional space.

The aperiodic atomic structure in three-dimensional space

(cf. Fig. 7b) can now be deduced by a one-dimensional

(horizontal) cut R (parallel to a1) through this two-dimen-

sional representation of superspace. The intersections of R

with the AMFs of the superspace atomic domains give the

positions of the atoms in three-dimensional space. Note again

that along the three-dimensional space line R there is no

translational symmetry (periodicity).

If all intersections (P0, P00, P000 etc.) are shifted by transla-

tional symmetry into the left unit cell (i.e. parallel to as1,

dotted lines) the resulting curve is the atomic modulation

function for the depicted atom. Or, in more general words, the

shape of the AMF for any atom can be reconstructed via the

positions of this atom in three-dimensional space and vice

versa.

The type of representation depicted in Fig. 7(c) occurs very

frequently in the description of modulated structures and will

reappear in x3, for example in conjunction with two-dimen-

sional sections out of four-dimensional electron-density maps.

The atomic modulation functions are wavefunctions with a

period of 1, therefore a phase t of the modulation can be

defined which runs parallel to as4 and ranges from 0 (origin of

cell) to 1 (origin of next cell). The coordinate of the fourth

dimension, x4 (which also runs parallel to as4) has to be

distinguished from this new parameter t: in Fig. 7(c) the atoms

P, P0, P00 and P000 have the same phase (t = 0), but different

coordinates x4. The value of t is found from a projection onto

as4 along R while the value for x4 is found by a projection onto

as4 along as1. A different value of t will lead to a different set of

points P . . . P000 in three-dimensional space which, however, is

related to the one obtained for t = 0 by a simple origin shift.

For a visual demonstration of the impact of t onto the

description of the crystal structure the interested reader is

referred to the ‘superspace playground’, a website maintained

by the Laboratory of Crystallography at the École Poly-

technique Fédérale de Lausanne (Chapuis & Orlov, 2005).

As the whole crystal structure in three-dimensional space is

defined as a three-dimensional cut R of the (3 + 1)-dimen-

sional superspace, all atoms in the crystal (i.e. in the aperiodic

three-dimensional structure) have the same phase t, but, as

mentioned before, not the same coordinate x4. Therefore, for

the crystal-chemical analysis only atoms with the same phase

of the modulation, i.e. with the same value of t, can be

considered. Shifting these atoms from the three-dimensional

space line R into one unit cell (via the restored translational

symmetry of the superspace construction) provides a very

elegant way for this analysis, realised, for example, in the so-

called t-plots shown in x3: varying t for a certain geometric

parameter from t = 0 to t = 1 provides all values for this

parameter occurring anywhere in the three-dimensional

crystal structure along R. This is visualized in Fig. 7(d): the

interatomic distance at the phase of the modulation t = t0 is

equivalent to the distance between atoms P and P0 in three-

dimensional space, the distance for t = t1 represents the three-

dimensional space distance between P0 and P00, the one for t =
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Figure 7
The superspace approach for aperiodic structures. At the top a periodic
one-atom structure is shown with four equivalent positions P, P0, P0 0 and
P0 0 0 (a). In the aperiodic structure the four atoms have been shifted out of
their original positions (small black circles) by apparently arbitrary
amounts (b). (1 + 1)-Dimensional sketch (c) of the superspace approach
around the atomic positions of (b). A section defined by the superspace
vectors as1 and as4 is shown, with as4 perpendicular to a1 and the angle
between a1 and as1 defined by the � component of q (see text). Average
positions (cf a) depicted as dashed vertical lines, ‘modulated positions’ as
solid curves (red). Please note that these red curves correspond to the red
lines shown in the top row of Fig. 2(a). The positions of the atoms in
three-dimensional space (P, P0, P0 0, P0 0 0) can be derived from the
intersections of the three-dimensional space line R (parallel to a1) and
the atomic modulation functions. Shifting P, P0, P0 0, P0 0 0 into the unit cell on
the left by lattice translations (dotted lines) gives the shape of the AMF of
this atom, or, in other words: the AMF representing atom P in superspace
is the mathematical expression of all the positions of P in the three-
dimensional crystal. R can be drawn for different values of t, the phase of
the modulation (here: t = 0). A more detailed definition of t is given in
x1.3. (d) Superspace section with two unit cells to illustrate the
significance of t. To calculate all interatomic distances on R it is sufficient
to calculate all distances for the first unit cell from t = 0 to t = 1 (see text).
For example, the distance d2 at t = t2 in (d) is equivalent by translational
symmetry to the distance between P0 0 and P0 0 0 on the three-dimensional
line R in (c) where t = 0.



t2 the three-dimensional space distance between P00 and P000,

and so on (note that the two atoms defining one distance still

have the same t value). Of course, other structural features

such as coordinates, bond lengths, torsion angles, etc. also

change with t, and it is exactly this variation in geometry with t

that is the core of the discussion of molecular geometry for

modulated structures (cf. x3).

1.4. Commensurate approximation or superspace descrip-
tion?

Based on this superspace description one of the funda-

mental questions related to modulated structures can be

addressed: under what circumstances is a superstructure

approximation of an incommensurately modulated structure

valid enough and when is it necessary, or at least more

appropriate, to use a higher-dimensional approach? Unfortu-

nately, unlike in the case of the Ultimate Question of Life, the

Universe, and Everything from Douglas Adams’ famous book

The Hitchhiker’s Guide to the Galaxy there is no simple

answer to this question. In general, one can say that a

commensurate/superstructure approach is valid as long as it

properly reflects the three-dimensional structure and does not

lead to too many problems such as unrealistic geometric

features, poor data-to-parameter ratio, or strange displace-

ment ellipsoids which have to be tamed with the help of

(usually undesired) restraints or constraints.

In incommensurate cases such a commensurate approach –

as already mentioned – always has to be regarded as an

approximation because the atomic positions used in the

superstructure are not the positions of the atoms in three-

dimensional space. This is illustrated in Fig. 8. To display the

atomic positions of an aperiodic structure by a superstructure

approximation, the superspace lattice has to be deformed in

such a way that one of the lattice points coincides with R. In

Fig. 8(a) this is the lattice point of the fourth unit cell (grey

circle). Therefore, the corresponding superlattice is fourfold,

and the respective coordinates x1 of the commensurate

approximation can be calculated from the fractional coordi-

nates x1, x01, x001 and x1000 (Fig. 7) of the incommensurate

structure.

Owing to the lattice deformation which is necessary to

approximate a q vector of (e.g.) 0.238 by the rational number

0.25 = 1
4 (Fig. 8b) the resulting positions in the superstructure

(green circles) are visibly different from those which are

derived from the superspace representation (Fig. 8a) and

which are the real positions of the atoms in physical space

(black circles). This effect becomes the more pronounced the

further one proceeds along the three-dimensional space line R

and usually manifests itself in problems during the refinement.

In cases where the satellite reflections occur along one of

the reciprocal axes and the multiplier n for the n-fold super-

structure is high, a commensurate three-dimensional refine-

ment can still behave properly (and thus be pursued) but more

often the mentioned warning signs (well known from classical

three-dimensional crystallography) appear already at an early

stage of the refinement and should be taken as an indication

that a transition into a superspace description might be more

promising.

At first sight it may seem cumbersome and puzzling to

introduce an additional dimension with no physical meaning.

However, there is one inherent advantage: the superspace

approach is not limited to aperiodic structures but can also be

applied to commensurate superstructures and non-modulated

structures. Therefore, it can provide, e.g. in the case of phase

transitions, one structural model for all different phases where

the three-dimensional space group of the non-modulated high

temperature structure may be derived as a subgroup of the

superspace group of the modulated low-temperature structure

(Chapuis, 1996; Schönleber et al., 2003). In the case of an n-

fold superstructure, the superspace description might improve

the data-to-parameter ratio, which is especially important for

superstructures with large n.

2. Development and present situation

A glance into the crystallographic literature suggests that

aperiodic structures have received much more attention in the

past one or two decades than previously. However, the

recognition of aperiodic structures is by no means a recent

phenomenon in the long history of crystallography. The

following section will summarize the developments in this field

from early findings to the current status of research.

2.1. Historical perspective

Shortly after the law of constancy of angles by Nicolaus

Steno heralded the birth of modern crystallography, Jean-
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Figure 8
Extended version of the sketch shown in Fig. 7. An incommensurate case
with a q vector of 0.238�a1* is assumed (a). The closest simple rational
number here is 0.25 = 1

4, which results in a fourfold superstructure (b).
Note the skew of the lattice compared with the original geometry (dashed
lines). The resulting (different!) atomic positions from the incommensu-
rate representation (black circles) and the superstructure (green circles)
are depicted at the bottom (c).



Baptiste Romé-de-Isle proposed in 1772 that crystals are

made of microscopic building blocks (the unit cell). René-Just

Haüy renewed this thought by proposing that these building

blocks are small parallelepipeds and he enunciated the law of

rational indices, according to which each crystal face is

uniquely characterized by three small integers. This law

suggested that crystals are built up of a periodic array of those

basic structural units in all three dimensions. This three-

dimensional periodicity was then believed for almost the next

200 years to be one of the most fundamental principles

underlying crystalline architecture.

This concept of periodicity associated with space-group

symmetry represents a powerful tool for structural studies and

is the basis for successful investigations of crystals by optics

and diffraction. Since the discovery of X-ray diffraction by von

Laue and co-workers in 1912 (Friedrich et al., 1912, 1913), it

was believed that the discrete distribution of diffracted

intensities was a direct consequence of the periodic arrange-

ment of the atoms in the three dimensions of ordinary space.

However, indications questioning the paradigm of three-

dimensional periodicity of crystals appeared all during the

history of modern crystallography. Many crystals have been

found which do not fulfil the periodicity criterion, but never-

theless give diffraction patterns with perfectly discrete peaks.

The discovery of these new types of structures is mainly a

result of the problem of trying to index the diffraction peaks

with three small integers, but also of applying the law of

rational indices to the crystal faces during studies of crystal

morphology.

The law of Haüy on rational indices was questioned during

optical studies on the mineral calaverite AuTe2 (Smith, 1903).

Later Dehlinger explained the broadening of Debye diffrac-

tion lines in metals with a periodic deformation of the lattice

(Dehlinger, 1927). As it was already known that periodic

perturbations in optical gratings generate additional diffrac-

tion spots, Dehlinger thus concluded that in analogy a defor-

mation of the crystal lattice should generate secondary lines

next to the main lines in the X-ray diffraction pattern, which

he called Gittergeister (lattice ghosts). While re-investigating

calaverite, Au1 � pAgpTe2 with p < 0.15, Goldschmidt and co-

workers concluded that the law of rational indices is not a

general law and cannot be applied to this mineral (Gold-

schmidt et al., 1931). While studying the diffraction pattern of

the aluminium–copper alloy Duralumin, Preston observed

additional reflections next to the diffraction peaks of the

lattice (Preston, 1938). He called these additional diffraction

spots satellites. Daniel and Lipson also found additional

reflections while studying the alloy Cu4FeNi3 (Daniel &

Lipson, 1943). They identified a regular deformation of the

original cubic lattice as the origin of those. Tanisaki explained

additional sharp satellite reflections in the diffraction images

of NaNO2 by a micro-domain structure (Tanisaki, 1961, 1963).

de Wolff and his co-workers investigated �-Na2CO3 and

found that the additional reflections could be indexed with

small integers only if a fourth index was included (Brouns et

al., 1964) and that the fourth direction (giving the fourth

index) does not coincide with any set of lattice planes of the

main lattice (defined by the first three directions). The struc-

ture of �-Na2CO3 was then refined as a modulated structure in

an harmonic approximation (de Wolff, 1974; van Aalst et al.,

1976), i.e. the displacive modulation was described with a

continuous function by one harmonic wave. In a re-investi-

gation (Dusek et al., 2003) satellite reflections up to fifth order

and additional harmonic waves were used to better model the

anharmonic features of the structure.

At the same time Nowotny and co-workers identified the

so-called chimney ladder compounds Cr11Ge19, Mo13Ge23 and

V17Ge31 as incommensurate intergrowth compounds

(Völlenkle et al., 1967). Some years later Johnson and Watson

determined the atomic displacements, i.e. the atomic modu-

lation functions of the molecular composite crystal hepta-

(tetrathiafulvalene) pentaiodide, which they called a dual

sublattice system, via applying a superstructure approximation

(Johnson & Watson, 1976).

The final step to recognizing that translational symmetry is

not a conditio sine qua non for the crystalline state was the

discovery of a (non-crystallographic) icosahedral point group

in the diffraction pattern of aluminium–manganese alloy (Al

with 14 at.% Mn; Shechtman et al., 1984). This alloy was then

called a quasicrystal. The sharp diffraction spots are explained

by a long-range orientational order. This discovery of quasi-

crystals forced the crystallographic community ultimately ‘ . . .
to reconsider the concept of crystals’ (Yamamoto, 1996).

Following this new idea, calaverite was re-investigated as an

incommensurately modulated crystal and all faces could be

indexed by four small integers. Now it was concluded, that

‘( . . . ) the classical law of rational indices still holds for

incommensurate crystals, provided the correct number of

indices is used (four in the case of calaverite)’ (Dam et al.,

1985).

The two common features of all these examples are that the

crystal exhibits flat faces and that they are characterized by

sharp and well separated peaks, as is the case for classical

three-dimensional periodic crystals. But in contrast to ‘clas-

sical’ crystals the examples discussed above lack three-

dimensional translational symmetry and consequently are

classified in the new category of so-called aperiodic crystals.

More detailed explanations can be found in reviews like those

of Janssen & Janner (1987), Janssen (1988), Bertaut (1990),

van Smaalen (1995), Chapuis (1996) and Yamamoto (1996) or

in the International Tables for Crystallography, Vol. C in ch.

9.8 about Incommensurate and Commensurate Modulated

Structures by Janssen et al. (2006).

2.2. Current status

The increasing number of publications in the past decades

on modulated structures described within the superspace

approach demonstrates that this concept is well established

now and is becoming more and more known, accepted and

familiar to the scientific community. This development is also

reflected in the two textbooks Aperiodic Crystals by Janssen et

al. (2007) and Incommensurate Crystallography by van

Smaalen (2007) within the IUCr Monographs on Crystal-
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lography series. The interested reader is referred to these two

volumes.

The recent technical developments (two-dimensional

detectors, powerful computers with large memory and fast

processors etc.) allow the treatment of large numbers of

reflections and complicated structures on an acceptable

timescale. The implementation of higher dimensions, i.e. more

than three indices, to allow handling of satellite reflections is

available in almost all commercial and non-commercial

diffractometer software packages. The release of JANA2006

(Petricek et al., 2006) enables not only ‘specialists’ but

‘everybody’ to apply the superspace approach in their

research.

Scanning through the reviews and databases on modulated

structures, the dominance of inorganic compounds is striking.

A search in the ‘Incommensurate Structures Database’ at the

‘Bilbao Crystallographic Server’ (Aroyo et al., 2006) for

example reveals only 15% organic or metal-organic structures.

However, despite this dominance of inorganic compounds,

there are also some impressive examples of modulated organic

materials.

For modulated molecular compounds there is a general

agreement in the literature that one possible origin of

modulation can be found in the interaction between crystal

packing and molecular conformation, i.e. in the interplay

between intramolecular and intermolecular forces (Dzyab-

chenko & Scheraga, 2004; Herbstein, 2005). Another reason

for the loss of three-dimensional periodicity might be

conflicting packing tendencies, even if the molecular confor-

mation is fixed.

To understand the structural features and the chemical

behaviour of modulated organic compounds an exact crystal-

chemical analysis is necessary, based on an accurate descrip-

tion of the crystal structure. As discussed above, this can be

performed in a very elegant and precise way by applying the

superspace approach. To illustrate the different implications

of the modulation on molecular crystals the following struc-

tures are briefly presented:

The classical example of the influence of the crystal packing

on the molecular conformation is biphenyl, C12H10 (Baudour

& Sanquer, 1983; Dzyabchenko & Scheraga, 2004). In the gas

phase the torsion angle ’ between the two phenyl rings is

42 (2)� (Fig. 9), which can be presumed to be the optimal

conformation of the biphenyl molecule. In the crystal struc-

ture at room temperature the molecule is planar (’ = 0�), at

least on average. This change of the molecular conformation is

caused by intermolecular interactions in the crystal. During

cooling to lower temperatures (T < 38 K) two other crystalline

phases appear which are characterized by molecules with h’i
6¼ 0� (Baudour & Sanquer, 1983). In particular, for the

incommensurately modulated low-temperature structure at

T = 20 K the average torsion angle varies between ’ = �11�

and ’ = +11�. The modulation of the structure can be

explained as the result of a competition between intra- and

intermolecular contributions to the lattice energy (Dzyab-

chenko & Scheraga, 2004).

A similar behaviour with respect to intramolecular torsion

can be found in 4,40-dichlorobiphenylsulfone, (ClC6H4)2SO2

(Zúñiga & Criado, 1995) and in 2-phenylbenzimidazole,

C13H10N2 (Zúñiga et al., 2006). In these structures, too, the

modulation is interpreted as a consequence of the interaction

between intramolecular forces and the crystal packing. For 2-

phenylbenzimidazole, for example, a variation in the central

torsion angle of �5� is found.

In contrast, the incommensurately modulated structure

of 3,4-diphenyl-2a,5a,6,7,8,8a,8b-heptahydro-furo[4,3,2-de]-

chromen-2-one, C22H20O3, cannot be explained by a torsion of

the molecular conformation (Guiblin et al., 2006). Here the

molecule can be divided into three rigid bodies. Two of these

are phenyl rings, but only one of them forms an intermolecular

contact with a neighbouring molecule via a C—H� � �O inter-

action. Due to the modulation the complete molecule is

shifted and the contact acts as a kind of mechanical spring. As

a consequence, the shifts of the two phenyl rings with respect

to the rest of the molecule are slightly different, and the origin

of the modulation lies in the mutual frustration of molecular

conformation and hydrogen-bond formation (Guiblin et al.,

2006).

The incommensurately modulated structure of the organic

salt quininium (R)-mandelate, C20H25N2O2
+
�C8H7O3

�, which

exhibits a strongly pronounced displacive modulation

(Schönleber, 2002; Schönleber & Chapuis, 2004), is slightly

more complicated – different parts of the quininium cation

follow different modulation functions: the quinolinium

segment, for example, shows a rather undulating movement,

while the vinyl group exhibits two preferred orientations,

which are occupied as a function of the phase t of the modu-

lation. As a consequence not only does the conformation of

the molecules vary, but, due to the different atomic environ-

ments, the anisotropic ADPs also vary. Furthermore, the

(intermolecular) hydrogen-bond scheme is modulated, which

means that the hydrogen bonds are formed and broken as a

function of t (see x1.3).

Other recent examples of modulated organic structures

comprise the channel inclusion compound of nonadecane/

urea, CH3(CH2)17CH3/(NH2)2CO, which was refined as an

incommensurate host–guest system at low temperature

(Toudic et al., 2008) with an alternating intermodulation

between host and guest substructures from channel to

channel, and the modulated structure of 1-phenyl-4-cyclo-

hexylbenzene, C14H20 (Evain et al., 2009), in which the

cyclohexyl group is rotated with respect to the benzene

ring.
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Figure 9
Sketch of the intramolecular torsion in biphenyl C12H10, re-drawn after
Dzyabchenko & Scheraga (2004).



3. Modulated structures – a case study

In the following section, the modulated crystal structure of

(6R,7aS)-6-(tert-butyl-dimethylsilanyloxy)-1-hydroxy-2-phen-

yl-5,6,7,7a-tetrahydropyrrolizin-3-one (from now on referred

to by its Novartis code VAR205), an organic compound (Fig.

10) with pharmaceutical impact, will be described and

discussed. A detailed description of the complete procedure of

structure analysis starting with the determination of the q

vector from the diffraction pattern will be given. Intensity data

were collected at T = 100 K on a Bruker AXS three-circle

goniometer with a SMART6000 CCD detector, using Cu K�
radiation from a fine focus rotating anode generator equipped

with Montel multilayer mirrors (Table 1). A standard data

collection protocol was followed with 12 180� ! scans (scan

width 0.6�) at different ’ positions and two different detector

positions (crystal-to-detector distance 40 mm). The software

utilized comprises the standard Bruker AXS suite SMART,

RLATT, SAINT (Bruker AXS, 2007a,b,c) and SADABS

(Bruker AXS, 2001),3 the SHELXTL program package

(Sheldrick, 2008), and the crystallographic computing system

JANA2006 (Petricek et al., 2006). Graphical representations of

molecules were generated with PLATON (Spek, 2003) and

DIAMOND (Brandenburg, 1999).

VAR205 is a key intermediate in the synthesis of potential

lymphocyte function-associated antigen 1 inhibitors

(Zecchinon et al., 2006) bearing a pyrrolizinone scaffold

(Baumann, 2007). Structural analysis was carried out to

establish the relative stereochemistry at the fused ring core

and the degree of pyramidalization at the central nitrogen

atom.

3.1. The diffraction pattern

The diffraction pattern of VAR205 shows irregularities –

visible either with a suitable program that allows a schematic

representation of reflections in reciprocal space (in the present

study RLATT) or in a reconstruction of reciprocal space

(Fig. 11): indexing using all observed spots (i.e. a supercell

approach) results in a huge monoclinic unit cell with a volume
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Figure 10
Structural formula of (6R,7aS)-6-(tert-butyldimethylsilanyloxy)-1-
hydroxy-2-phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one, C19H27NO3Si
(VAR205).

Table 1
Experimental data.

Crystal data
Chemical formula C19H27NO3Si
Chemical formula weight 345.51
Temperature (K) 100
Crystal system, superpspace group Monoclinic, P21(�0�)0
a, b, c (Å) 6.425 (2), 6.522 (2), 22.716 (6)
� (�) 90.739 (11)
Modulation wavevector q [0.1422 (2), 0, 0.3839 (8)]
V (Å3) 951.8 (5)
Z 2
Dx (Mg m�3) 1.2052 (6)
F(000) 372

Data collection
Diffractometer Bruker AXS three-circle goniometer

with SMART6000 CCD detector
Radiation type Cu K�
Absorption correction Semi-empirical from equivalents
� (mm�1) 1.215
Data collection method ! scans
Range of h, k, l, m �8 � h � 8

�6 � k � 7
�28 � l � 28
�4 � m � 4

No. of measured, independent and
observed reflections

52 466, 28 265, 24 813

Criterion for observed reflections I > 3�(I)
Rint,all, Rint,obs 0.023, 0.020
Rint,all, Rint,obs (main reflections) 0.017, 0.017
Rint,all, Rint,obs (first-order satellite

reflections)
0.023, 0.023

Rint,all, Rint,obs (second-order satellite
reflections)

0.020, 0.020

Rint,all, Rint,obs (third-order satellite
reflections)

0.028, 0.027

Rint,all, Rint,obs (fourth-order satellite
reflections)

0.048, 0.041

Figure 11
Reconstruction of the h0l layer of the diffraction pattern of VAR205.
Note the alternating vertical bands of spots with high intensity (black
arrows) and no intensity (white arrows). The reconstruction was
calculated using the APEX2 suite of programs (Bruker AXS, 2007d).

3 Please note that many other commercial and non-commercial software
packages are also capable of handling diffraction patterns of modulated
structures with satellite reflections.



of 30 500 Å3, which would correspond to approximately 70

molecules per unit cell. Such large Z values usually indicate

either a wrong unit cell, a twinned crystal or a modulated

structure. A closer look at various orientations of the

diffraction pattern reveals a distinction between reflections

based on their intensities: layers of very strong spots are

surrounded in a non-arbitrary way by weaker reflections. This

intensity pattern strongly suggests that the possibility of

having a twinned crystal can be eliminated and that the crystal

structure of VAR205 is modulated.

As discussed in x1 there are three ways of handling the

diffraction pattern of a modulated structure: indexing the

basic cell with main reflections only (ignoring the satellite

reflections and therefore as a consequence neglecting a large

fraction of diffracted intensities), indexing the supercell using

all reflections equivalently (which is in the case of incom-

mensurateness only an approximation) and indexing the basic

cell followed by the determination of the modulation wave-

vector q. These options along with their subsequent steps are

summarized in the flowchart in Fig. 12. In many cases, espe-

cially when the modulation is not too strong, the fastest way to

obtain structural information and an idea of the extent of the

modulation is to start with the basic cell and try to determine

the average structure.
3.1.1. Basic cell and average structure. The main reflections

in the diffraction pattern of VAR205 yield a monoclinic basic

cell with a volume of 950 Å3, corresponding to two molecules

per unit cell (Fig. 13). The satellite peaks were eliminated ‘by

hand’ with RLATT from the peak list, the remaining main

reflections were re-imported into the indexing routine. Data

processing and scaling results in classical three-dimensional

data, which can then be inspected for systematic absences to

determine the space-group symmetry of the main reflections.

The reflection condition 0k0, k = 2n and the enantiopurity of
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Figure 12
Flowchart illustrating different possible ways of handling the diffraction
data of one-dimensionally modulated structures. Coordinates obtained
from the average structure or the superstructure (after transformation)
can be used as a starting model for the refinement in (3 + d)-dimensional
superspace.

Figure 13
Schematic depiction of the diffraction pattern of VAR205 with main and
satellite reflections and modulation wavevector q = 0.14�a* + 0.38�c*. (a)
Neglecting satellite reflections (light grey) results in a three-dimensional
unit cell of a = 6.4, b = 6.5, c = 22.7 Å (average structure). (b) Using all
reflections equivalently results in a three-dimensional unit cell a0 = 7�a =
44.8 Å, b0 = b = 6.5 Å and c0 = 5�c = 113.5 Å (supercell). The volume of
this superstructure unit cell is 35 times that of the unit cell of the average
structure. Once the q vector is known the unit cell can also be derived by
looking for the smallest integer numbers with which the components of
the q vector (approximated by rational numbers, here: 2/5 and 1/7) have
to be multiplied to reach a lattice point of the main reflections (c). Those
integers have to be applied to the cell parameters of the small unit cell
from (a) to give the big unit cell from (b).



the compound led to the monoclinic space group P21 with Z =

2. All attempts to solve the structure with classical direct

(SHELXS) or dual-space recycling methods (SHELXM)

failed, which was the first indication of a strong modulation.

If an average structure can be obtained this way, the coor-

dinates from the structural (isotropic) refinement can later be

used as a starting model for the refinement of the modulated

structure (to find the proper shapes of the AMFs). Useful

information can also be obtained from any disorder sites.

Equally important for a later (3 + 1)-dimensional treatment of

the problem is the knowledge of the space group. If P21 is the

space group of the average structure (even if the structure

cannot be determined this way) P21 will very likely also be the

basis of the superspace group symbol (see x3.2.1).

If the modulation is weak, it is often not only possible to

solve the average structure but also to refine it to very

reasonable agreement factors, usually, however, at the cost of

large displacement parameters or extensive disorder model-

ling.

3.1.2. Supercell and superstructure. For the supercell

processing the orientation matrix can either be obtained

directly by indexing all reflections or, if this is not possible, by

combining the information from the basic cell parameters and

q-vector components (Fig. 13). In the case of VAR205 the

three q-vector components are � = 0.143 (2), � = 0 and � =

0.384 (8) (cf. x3.1.3). To obtain an appropriate supercell, the

non-zero components will be approximated by � = 1/7 (’

0.1429) and � = 2/5 (= 0.4000), then the respective lattice

parameters will be multiplied by the denominators, i.e. a by 7

and c by 5. As a result a supercell is obtained with a volume

which is 7 	 5 = 35 times that of the basic cell. Please note

again that in this incommensurate case the supercell repre-

sents only an approximation: the value for � = 0.384 (8) was

approximated with � = 2/5; another possible approximation

could be � = 3/8 (= 0.375), resulting in a 7 	 8 = 56-fold

supercell with a somewhat different description of the atomic

arrangement for the same crystal structure!

Data processing and scaling can be pursued in the same way

as for a classical three-dimensional periodic structure.

However, one has to be aware of the fact that even if satellite

reflections to high order are observed, most of the reciprocal

lattice points are ‘empty’, i.e. no intensity will be detectable

(Fig. 14). Accordingly, profile fitting will be poor, average

intensities during data processing will be low and a large

percentage of the reflections will be classified as weak or

unobserved.

Nonetheless, there can be reasons to use a supercell inte-

gration and then later transform the resulting three-dimen-

sional hkl file into higher-dimensional data: conventional

three-dimensional software can be used and all data are

available at any time so that e.g. the decision up to which order

satellite reflections shall be included can be postponed.

In the present example of VAR205 structure solution was

possible for the commensurate 7 	 5-fold approximation in

the space group P21 using the dual-space recycling algorithm

employed in SHELXM. Subsequent cycles of refinement and

difference-Fourier map calculations allowed completion of the

model (35 independent molecules = 840 non-H atoms). Owing

to the large number of unobserved reflections the data-to-

parameter ratio was very poor and anisotropic refinement

(7560 parameters!) in SHELXL was only possible using block-

diagonal or conjugate-gradient least-squares instead of full-

matrix least-squares. Nonetheless, it was learned from the

superstructure approximation that the molecules show a

strong modulation along a (Fig. 15).

Even if the refinement of a superstructure could be carried

out with a good data-to-parameter ratio to acceptable agree-

ment factors, it is important to emphasize once again that the

superstructure solution in the present case can only be

regarded as an approximation. Since � is equal to 0.384 (8),

treating the data in a 7 	 8-fold supercell with � = 3/8 is at

least as valid as in the 7 	 5-fold supercell with � = 2/5
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Figure 14
Intensity distribution in the reciprocal supercell of VAR205. All
measured intensities were summed up and collapsed into one unit cell
(compare with Figs. 11 and 13b). Corresponding orders of the reflections
in the superspace approach are given. Note that the intensity of the first-
order satellite reflections is of the same order of magnitude as the
intensity of the main reflections, indicating a very strong modulation, and
that many of the reciprocal lattice points have no measurable intensity.

Figure 15
Superstructure of VAR205 as obtained from structure solution and
refinement in the 7 	 5-fold supercell approximation (H atoms omitted
for clarity). View along b, 35 molecules in asymmetric unit shown. Note
the sinusoidal modulation along a.

4 The chemical synthesis of VAR205 started from naturally occurring
hydroxyproline, the chiral carbon C09 remained unchanged in all synthetic
steps. This was verified in one of the final refinement cycles [Flack x = 0.04 (1)].



discussed above. This problem occurs whenever the q-vector

components are between two rational numbers, e.g. 0.186,

which is as close to 1/5 as it is to 1/6, so that neither a fivefold

nor a sixfold supercell will mirror the true structure (see, for

example, the discussion in Schönleber & Chapuis, 2004).

Usually this problem will reveal itself in strange geometric

and/or displacement parameters in one or more of the mole-

cules in the asymmetric unit.

In principle, one of the molecules in the asymmetric unit

could be used as a starting model for the refinement of the

structure in superspace (in analogy to the average structure of

x3.1.1) by transforming the coordinates into the basic cell (in

the present case by taking, for example, the molecule closest

to the origin and multiplying the fractional coordinates x by 7

and z by 5). If the modulation is not too strong, i.e. if the

amplitudes of the AMFs are not too large, the probability is

high of finding appropriate starting values for the AMFs in the

first cycles of refinement. In general, a starting model for

(3 + 1)-dimensional refinement derived from the super-

structure can be assumed to be better than a starting model

from the three-dimensional refinement of the average struc-

ture in the basic cell. As in the present case the modulation is

rather strong it was, however, not possible to establish a good

structural model with proper AMFs for all atoms starting from

the fractional coordinates of one molecule of the super-

structure approximation.

3.1.3. Indexing in superspace. The crucial step for all

subsequent action in superspace is the determination of a

suitable q vector from the original raw data. For this purpose it

is important to separate main reflections from satellite

reflections and obtain fractional indices (i.e. hkl values of the

closest main reflection and the deviations from these integers)

for the latter based on the orientation matrix of the basic cell

defined by the main reflections. If this procedure is carried out

with first-order satellites only (the higher-order satellite peaks

were eliminated from the reflection list with RLATT), a very

clean and clear distribution of fractional indices (Fig. 16) was

obtained (via the indexing routine in SMART) resulting in an

initial q vector of (0.14, 0, 0.38).

Once the starting values for the q-vector components have

been determined this way, the data can be processed using the

orientation matrix of the basic cell along with these q-vector

components and a maximum satellite order nmax, up to which

satellite peaks should be processed.

Depending on the integration software, the output format

of the resulting hkl file can vary. Using SAINT, the resulting

reflection file is always (3 + 3)-dimensional (indices h, k, l, m,

n, p). In the present (3 + 1)-dimensional case it contains main

reflections (m = n = p = 0) and satellite reflections (m 6¼ 0, n =

p = 0). Overlapping satellite reflections (which could occur

with one of the q-vector components close to 0.5) are treated

the same way as overlapping reflections from a twinned

crystal, i.e. a ‘twin component’ batch number is given at the

very end of the lines in the reflection file.

The raw reflection files can then be scaled and corrected for

absorption effects, e.g. with SADABS (unless the file contains

overlapping reflections, this option is not yet implemented),

and the resulting [again: (3 + 3)-dimensional] hkl file can be

directly imported into JANA2006. The guided input routine of

JANA2006 (file > structure > new) leads through data

reduction, analysis of systematic absences and space-group

determination. It closes with the option to attempt a structure

solution in higher-dimensional space via the external program

SUPERFLIP (Palatinus & Chapuis, 2007).

3.2. Structure solution and completion in superspace

Just as for three-dimensional periodic crystals the first step

in the structure solution process for modulated structures in

superspace is the determination of the correct superspace

group. This can be done manually or, as mentioned above,

automatically during the data importing routine within

JANA2006 by checking the systematic absences for both main

and satellite reflections. The superspace groups for (3 + 1)

dimensions are tabulated along with their special reflection

conditions in the International Tables for Crystallography, Vol.

C in ch. 9.8, Incommensurate and Commensurate Modulated

Structures, by Janssen et al. (2006).

3.2.1. Superspace-group determination. A first glance at

Table 9.8.3.5 ‘(3 + 1)-dimensional superspace groups’ in the

International Tables for Crystallography, Vol. C, suggests that
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Figure 16
Histogram of the deviations from integer numbers of the first-order
satellite reflections of the compound under study as obtained during the
indexing routine. It clearly shows a modulation wavevector (�0�) with the
components � and � having irrational values.



the superspace-group symbol consists of the basic space-group

symbol (here: P21) extended by an expression in parentheses

which denotes the general form of the q vector followed by

additional letters.

However, this is only partially true. The Bravais symbol

refers now to a (3 + 1)-dimensional lattice. Looking at super-

space group No. 53, B2(00�)s, for example, the letter B does

not mean an additional centring of (1
2,0,12) as in three-dimen-

sional space groups, but of (1
2,0,12,0) since the centring can also

occur along the fourth dimension. If this is the case, the

Bravais symbol B0 (or X) is used to describe the additional

centring of (1
2,0,12,

1
2). The letters following the q vector indicate

additional translational components of the symmetry opera-

tors along the fourth dimension (screw and glide components:

if there is none, a ‘0’ is written, an ‘s’ stands for a translation by
1
2). For a more sophisticated discussion the interested reader is

referred to ch. 3 of the IUCr textbook Incommensurate crys-

tallography by van Smaalen (2007).

In the case of VAR205 the choice of the superspace group is

straightforward: the only special reflection conditions are 0k00

with k = 2n, indicating the twofold screw axis along b (which is

already known from the basic cell). Therefore, the lattice in

superspace is primitive, the resulting superspace group is

P21(�0�)0.

Now imagine, for example, a monoclinic b unique lattice

with a q vector (�0�) and systematic absences for the reflec-

tions 0k0m with m 6¼ 2n. This indicates a screw component of

the twofold axis along the fourth dimension, the resulting

superspace group would be P2(�0�)s. The systematic absences

might also be 0k00 with k 6¼ 2n and h0lm with m = 2n. Here the

first condition indicates as above a twofold screw axis along b,

the second one a glide plane perpendicular to b with a glide

component along the fourth dimension. The resulting super-

space group would be P21/m(�0�)0s.

3.2.2. Structure solution. Having established the super-

space group, the input file for SUPERFLIP can be generated

and the program can be called directly from within

JANA2006. SUPERFLIP extends the charge-flipping algo-

rithm introduced by Oszlányi & Süto (2004, 2008) to an

arbitrary number of dimensions and can therefore solve

modulated structures ab initio in higher-dimensional space.

This capability is especially important if no three-dimensional

structure (average structure or superstructure) is available

from which a starting model for the basic structure can be

deduced. SUPERFLIP generates a (3 + 1)-dimensional elec-

tron-density map which is then searched for atoms by

JANA2006. Since atoms in (3 + 1)-dimensional superspace

have to be imagined as one-dimensional waves, the inter-

pretation of the electron-density maps already requires the

use of at least one modulation wave (automatically employed

by JANA2006), i.e. the program puts out starting values for

the fractional coordinates of the atoms and starting values for

the parameters describing the AMFs.

From the SUPERFLIP solution of the present example a

peak list was extracted from which the first six peaks were

selected based on peak height and interatomic distances (see

discussion below) as silicon (peak1), oxygen (peaks 2–3) and

carbon (peaks 4–6) atoms. Starting from this set of six atoms

the model was completed in subsequent cycles of refinement,

Fourier-map calculation, and peak search followed by manual

identification of possible new atomic positions.

Analyzing the surroundings of atoms in modulated struc-

tures differs considerably from doing so in non-modulated

structures: for every distance of interest there would be an

infinitely long table of values, owing to the missing transla-

tional symmetry. Here the superspace concept with the

modulation parameter t (indicating the phase of the modula-

tion, see x1.3 and Fig. 7) provides a very convenient way to

visualize and analyse structural properties such as interatomic

distances. A listing of a certain distance as a function of t, i.e.

varying t from 0 to 1, provides all values for this distance

occurring anywhere in the structure (van Smaalen, 2004). In

this context it is important to keep in mind that the extent of

variation which is found in the geometric parameters of

modulated structures resembles the findings from packing

analyses of non-modulated structures: bond lengths are

expected to show less variation than bond angles, which again

vary less than torsion angles and intermolecular distances.

There are two ways of checking the variation of a structural

parameter with t in JANA2006: the subroutine Dist produces a

listing of the structural parameter in user-defined intervals, the

subroutine Grapht provides a plot of this relation. When

looking for missing atoms in a structure based on a Fourier-

map peak list it is usually faster to tabulate the distances at

intervals of 0.1 or 0.2 in t than to make graphs. Fig. 17 shows

the results of such a search in the vicinity of e.g. atom Si01.

Atom C03 is one of the carbon atoms bonded to Si01 and at

this early stage of refinement shows a rather large variation in

the bonding distance to the silicon atom (cf. the difference of

0.111 Å between minimum and maximum value). Peak max8

from the Fourier peak list to Si01 varies from 1.2 to 2.8 Å and

therefore will probably not be a suitable candidate for one of

the missing C atoms. Peak max7, on the other hand, shows a

relatively even distribution of distances and therefore will be

selected as carbon atom C04. Another cycle of refinement,

Fourier-map calculation and peak search would then follow.

In three-dimensional space refining a structure means

finding values for the coordinates x, y, z and the six anisotropic

atomic displacement parameters Uij which result in the best

agreement of Fobs and Fcalc. In superspace this concept has to

be extended: the refined coordinates x, y, z (or better: x1, x2,

x3) are the positions of the atoms in the basic structure and, in

addition, for each atom the deviation from this average posi-

tion has to be determined and refined. This deviation can be

expressed by a variety of AMFs (cf. Fig. 2), which, in the case

of a superposition of harmonic waves up to second order for

the x1 coordinate looks like

f ðx4Þ ¼ x1 þ A1 � cosð2� � 1 � x4Þ þ B1 � sinð2� � 1 � x4Þ

þ A2 � cosð2� � 2 � x4Þ þ B2 � sinð2� � 2 � x4Þ: ð1Þ

The coefficients A1, B1 and A2, B2 are the amplitudes of the

harmonic waves of first and second order. These coefficients

are determined by JANA2006 on the basis of the diffraction
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data and occur as parameters in the atomic parameter file

m40. Therefore, for each of the positional parameters (frac-

tional coordinates x1, x2 and x3) two more parameters per

harmonic wave will occur to describe the AMF which char-

acterizes the deviation from the basic position along the fourth

dimension.

During the structure completion cycle it is important to

verify for the atoms in the structural model that their position

has been determined correctly and that their AMFs follow the

observed electron density. This procedure resembles very

much the 2Fobs � Fcalc map calculation and inspection that

structural biologists use to check if their protein model is

placed correctly and fits the observed electron density. For this

purpose an Fobs map is calculated in superspace around the

atom of interest as a function of x4 and an overlay of the map

and the AMF is generated with the subroutine Contour

(Fig. 18). Here again the two-dimensional projection tech-

nique introduced in Fig. 7 is used: the vertical axis always

represents the superspace coordinate x4 (along as4), the

second axis is one of the three remaining axes as1, as2 or as3

with their fractional coordinates x1, x2 or x3 (as the angle

between the two axes is defined via the respective q-vector

component, the images differ). The three sections in Fig. 18

show clearly that there is density around the position of Si01

and that the AMF follows the observed electron density. It

also becomes obvious, however, that, at a later stage, higher

harmonic funtions will have to be added to model the details

of the electron density better. Please note again the one-

dimensional character of the atomic domain along as4, repre-

sented by its electron density and its AMF (red line).

When the structural model has been completed (i.e. all

atoms have been found and assigned) according to the above-

mentioned procedure the refinement is completed by adding

harmonic functions of higher order, introducing anisotropic

ADPs and calculating H-atom positions. For VAR205 Robs for

all (main and satellite) reflections at this stage had already

dropped to 0.146, compared with 0.400 for the first model

which included only six atoms.

3.2.3. Completion of refinement. In the case of a strong

modulation, it is generally advantageous to use not only

harmonic waves of first and second order, but also of the third

order for the AMFs of the positional parameters before

switching to anisotropic refinement. By summing up the

higher-order waves, it is possible to better model the details of

the electron density. In Fig. 19 an example is shown where a

hypothetical ‘electron-density distribution’ is fitted quite

satisfactorily using a superposition of three harmonic waves of

higher order, while the first-order wave alone is a rather rough

approximation. Introducing anisotropic ADPs too early can

hinder the proper determination of the positional AMFs.

In the refinement process for VAR205 three harmonic

waves for the positional AMFs were added (Robs = 0.083)

before switching to anisotropic ADPs (Robs = 0.070). Just as in

the refinement of a three-dimensional periodic structure it is

important to make sure at all times that the introduction of

additional harmonic waves (= more parameters) is justified by

a statistically significant drop in the crystallographic agree-

ment factors.

Up to this point only AMFs for the positional parameters

were used, i.e. only the so-called displacive modulation, which
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Figure 18
Fit of AMFs of Si01 (red lines) to the electron density for all three
superspace sections. Each of the three diagrams is a variation of the
superspace representation shown in Fig. 7, to which the observed electron
density has been added. For a better illustration two periods are drawn
along x4. Note that not all the details of the electron density can be
accurately described with only one harmonic function. The horizontal
width corresponds to 3 Å in all three pictures, showing the different
amplitudes along the three dimensions of physical space and the large
amplitude of the deviation from the average position along x3.
Hypothetical examples of electron-density distributions requiring the
use of of sawtooth and crenel type AMFs are shown in Fig. S2 of the
supplementary material.

Figure 17
Distances of atom C03 and Fourier peaks max7 and max8 from Si01 along
the phase of the modulation t as obtained from the JANA2006 subroutine
Dist (a) and Grapht (b). The large variation between minimum and
maximum distance for max8 indicates that this peak might not be a
suitable new atomic position.



affects the positions of the atoms, was considered. However,

just as the coordinates x1, x2 and x3 can be modulated, other

atomic parameters such as the occupation factors or the ADPs

can also vary periodically throughout the structure, owing to

the varying environments of the atoms. Again, these modu-

lations can be described by harmonic, sawtooth or crenel

functions (cf. Fig. 2). Occupational modulation is frequently

encountered in alloys but can also occur when, for example,

solvent positions in organic modulated structures are not

always fully occupied and the amount to which they are

occupied varies periodically. ADPs, on the other hand, tend to

be modulated whenever a strong displacive modulation is

present, because a change in interatomic distances and the

variation of the atomic surroundings often go hand in hand

with a change in the vibrational amplitudes. Accordingly

AMFs can also be added for the atomic displacement para-

meters Uij (thermal modulation). Since six values describe the

shape of the anisotropic displacement ellipsoid, every addi-

tional harmonic wave for the AMFs will add 12 more para-

meters to the refinement [one sine and one cosine component,

see (1)]. Again, it is important to constantly monitor

improvements in the fit of the electron density and the

agreements factors to check whether the introduction of new

higher harmonic waves is reasonable.

In the case of VAR205, in the final stages of refinement four

harmonic waves for the displacive and two harmonic waves for

the ADP modulation were used and along with the addition of

H atoms (riding model or free refinement possible) the R

factor for all (main and satellite) reflections dropped to Robs =

0.036.

3.3. Interpretation and presentation of results

While presenting the refinement results for a modulated

structure, it is important to keep in mind that there is not just

‘one bond length’ or ‘one crystal environment’ for a given

group of atoms. Often, the first step following the summary of

the refinement details is to divide the molecule into so-called

rigid units (if not already done during the refinement process,

see x3.3.2) and describe their movements relative to each

other. During the discussion of individual geometric para-

meters of interest it is necessary to pay attention to the fact

that all these values vary with the phase of the modulation t

around a mean value which usually corresponds to the values

expected for a non-modulated structure. Sections of electron

density can be used to show that the determined AMFs

adequately describe the experimental electron density

(resembling the 2Fobs � Fcalc maps in structural biology

papers) and to provide a graphical representation of the

extent of modulation present in the structure. If there is

interest in the crystal packing, the atomic coordinates of the

modulated structure can be exported as a commensurate

superstructure. Here, however, the same approximations have

to be accepted which have already been discussed in the

context of the superstructure approach (cf. x3.1.2).
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Figure 20
Atomic labelling scheme of (6R,7aS)-6-(tert-butyldimethylsilanyloxy)-1-
hydroxy-2-phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one. All atomic radii
are arbitrary. Figure drawn with PLATON (Spek, 2003).

Table 2
Refinement data.

Refinement on F
Rall, wRall 0.042, 0.042
Robs, wRobs 0.036, 0.041
Robs, Rall, wRall (main reflections) 0.033, 0.034, 0.043
Robs, Rall, wRall (first-order satellite

reflections)
0.031, 0.033, 0.039

Robs, Rall, wRall (second-order satellite
reflections)

0.032, 0.035, 0.038

Robs, Rall, wRall (third-order satellite
reflections)

0.040, 0.049, 0.041

Robs, Rall, wRall (fourth-order satellite
reflections)

0.063, 0.093, 0.064

GoFobs, GoFall 2.52, 2.38
No. of restraints 2
No. of parameters 1396
Weighting scheme w = [�2(F) + (0.01F)2] �1

(�/�)max �0.0082
��max, ��min (eÅ�1) 0.27, �0.39
Extinction correction Gaussian isotropic type I

Figure 19
Summing up harmonic waves of higher order can help to model the path
of the electron density more accurately with the AMF. In the depicted
example the (hypothetical) electron density (grey) is better fit with a
superposition (D) of the three waves A, B and C. Using only the
harmonic wave of first order (A) does not allow the description of the
anharmonic details.



3.3.1. Refinement parameters. The final structural model of

VAR205 is based on continuous atomic modulation functions

for displacive (x1, x2, x3) and thermal (Uij) modulation. Higher

harmonics up to fourth order were applied for the displacive

modulation of all atoms and higher harmonics up to second

order for modulation of the ADPs of the 24 non-H atoms. In

total 1396 parameters were refined. The atomic labels are

introduced in Fig. 20. Except atom H17, all hydrogen atoms

are coupled via a riding model to their respective carbon

atoms. The position of atom H17 (of the OH group) was

refined isotropically applying bond-length [O—H:

0.84 (10) Å] and bond-angle [C—O—H: 109.47 (50)�]

restraints.

The refinement was based on all main and satellite reflec-

tions up to fourth order, yielding a total of 28 265 reflections,

of which 24 813 are observed with I > 3�(I). The ratio between

the number of refined parameters and the number of reflec-

tions used is > 20. In the last refinement cycle no correlation

coefficient exceeded 0.7 (with three correlation coefficients

larger than 0.6, all affecting the positional parameters of atom

H17). The final residual parameters of the refinement are

given in Table 2.

3.3.2. Rigid units. Following the above-mentioned concept

of dividing the molecule into suitable rigid units the VAR205

molecule can be described as follows (Fig. 20): the silicon atom

with its tert-butyl substituent and two methyl groups is

connected via an oxygen atom to a non-planar tetra-

hydropyrrolizinone moiety, to which a flat phenyl ring is

attached. With respect to the modulation, these individual

molecular units act like rigid bodies, the modulation mainly

affects the torsion angles between the three segments, chan-

ging the conformation of the molecule as a whole, but not of

the molecular units. This variation will be discussed in x3.3.3.

This concept of dividing the molecule into suitable rigid

units can also be employed during the refinement procedure,

especially in cases with poorer data quality or fewer observed

satellite reflections. In the present study the high quality of the

dataset with satellite reflections observable up to fourth order

allowed all atoms to be treated individually, i.e. each with its

own set of AMFs, while still retaining a very high data-to-

parameter ratio (see Table 2). If this is not the case a so-called

rigid-body refinement can help to reduce the number of

parameters and/or avoid refinement problems such as unrea-

sonable geometries. For VAR205 this option was tested using

the above-mentioned rigid groups with Si01, C15 and C19 as

reference atoms. For all non-H atoms in those rigid units the

fractional coordinates and anisotropic ADPs were refined

individually, while positional modulation waves up to fourth

order and TLS (translation, libration, screw formalism)

modulation waves up to second order were refined for each

group as a whole (Schomaker & Trueblood, 1968). The H

atoms were attached via riding models. The atoms O08, O17
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Table 3
Selected bond lengths (Å) and bond angles (�).

Mean Minimum Maximum

C04—C07 1.538 (8) 1.528 (8) 1.542 (8)
O08—C09 1.428 (5) 1.424 (5) 1.432 (5)
C20—C21 1.384 (8) 1.377 (8) 1.395 (8)
C21—C22 1.383 (8) 1.367 (8) 1.393 (8)
C20—C21—C22 120.4 (4) 119.6 (4) 120.9 (4)
Si01—O08 1.653 (7) 1.649 (7) 1.658 (7)
O08—C09 1.428 (5) 1.424 (5) 1.432 (5)
Si01—O08—C09 125.7 (2) 124.3 (2) 127.6 (2)

Figure 21
Torsion angles C12—C13—C19—C20 and C09—O08—Si01—C04 as a
function of the phase of the modulation t. Curve drawn with the
JANA2006 subroutine Grapht.

Figure 22
Side view of the molecule in the crystal for two different values of the
phase of the modulation t. The anisotropic displacement ellipsoids are
drawn at the 50% probability level, the radii of H atoms are arbitrary. The
movie attached to this figure in the online version of the manuscript
shows the variation of the molecule (in conformation and position) over a
complete period of t. Please note that t is a spatial and not a temporal
variable and has to be distiguished from the variable t that is used in
physics for time. The movie corresponds to a ‘walk’ along the molecules
in Fig. 23.



with H17, and O18 were refined as individual atoms as

described in x3.2.3.

This strategy with common modulation parameters for all

atoms in the respective rigid units reduced the number of

refined parameters from 1396 to 775 and resulted in good

agreement factors (Robs = 0.040, Rall = 0.046 and wRall = 0.047

for all reflections, ��max = 0.31 e Å�1 and ��min =

�0.42 e Å�1, compared with values in Table 2). However, the

refinement suffered heavily from correlations and did not

converge properly. Therefore, this strategy of rigid-body

refinement was not pursued any further. However, as

mentioned above, in cases with limited numbers of reflections,

such a refinement strategy is an option to consider.

3.3.3. Selected geometrical parameters. Mean bond lengths

and angles in VAR205 are in very good agreement with the

expected values for non-modulated structures, as published in

the International Tables for Crystallography, Vol. C in ch. 9.5

(Allen et al., 2006). The distances and angles remain constant

within the standard uncertainties along the fourth dimension,

i.e. along the phase of the modulation t (see Table 3 for some

selected values).

Consider, e.g. the bond lengths and the bond angle within

the Si01—O08—C09 group, connecting the tert-butyldi-

methylsilanyl substituent with the tetrahydropyrrolizinone.

They are rather constant as a function of t (Table 3), the

torsion angles around these bonds (e.g. C09—O08—Si01—

C04), however, vary by 
 10�. The same holds for the C13—

C19 bond linking the tetrahydropyrrolizinone moiety to the

phenyl ring. Here the torsion angles vary by
 5� (see Fig. 21).

While the relative movement of the tert-butyldimethylsilany-

loxy and the tetrahydropyrrolizinone moieties with respect to

each other has a quite undulating character, the relative

movement of the tetrahydropyrrolizinone moiety and the

phenyl ring is less smooth (see animated gif attached to Fig. 22

in the electronic version of the paper).

The degree of pyramidalization of the central N atom is not

affected by the modulation, N11 is on average 0.331 (1) Å out

of the plane defined by the three carbon atoms C10, C12 and

C15. This distance varies only slightly with t: the minimum and

maximum distances are 0.320 and 0.343 Å. For related

compounds with a fully sp3-hybridized nitrogen (four substi-

tuents) distances around 0.53 Å are found (Wagner, 2008).

The constancy with t also holds for the envelope structure

C15—N11—C10—C09—C16, as can be seen from the torsion

angles in Table 4. C16 is on average 0.625 (1) Å out of the

plane defined by the four atoms C09, C10, N11 and C15

(minimum: �0.651 Å, maximum: 0.594 Å).

The relative stereochemistry of H15 and the tert-butyldi-

methylsilanyloxy substituent at the pyrrolidine five-ring can be

unambiguously defined as cis.

The two oxygen atoms O17 and O18 are clearly out of the

best plane defined by the five atoms N11, C12, C13, C14 and

C15. The average distance for O17 is 0.0934 (9) Å (minimum:

0.067 Å, maximum: 0.145 Å) and for O18 it is �0.2639 (9) Å

(minimum: �0.253 Å, maximum: �0.283 Å).

As already mentioned above, the hydrogen atom H17 of the

OH group was refined with restraints. As it is involved in the

hydrogen bond O17—H17� � �O18i along b [with symmetry

code (i) x; yþ 1; z], the corresponding bond lengths and

angles will be mentioned, but not further discussed. The

average distance O17—O18i is 2.564 (5) Å [minimum:

2.538 (6) Å, maximum: 2.588 (5) Å] and for O17—H17 it is

0.84 (5) Å [minimum: 0.78 (5) Å, maximum: 0.88 (5) Å], the

angle O17—H17—O18 is almost linear with an average value

of 176 (5)� [minimum: 172 (5)�, maximum: 179 (5)�].

3.3.4. Superstructure. The atomic coordinates from the

modulated structure can be converted into a commensurate

superstructure, with, however, the same approximations that

have to be accepted during a superstructure solution (cf.

x3.1.2). Looking at the unit cell of the superstructure alone

may not provide any insights regarding the direction of the

modulation, i.e. may not provide any answer to the question:

how does the variation in geometry and/or environment

proceed throughout the crystal? It can help to align the indi-

vidual molecules of the asymmetric unit according to the

modulation. For the crystal structure of VAR205 this

arrangement is found by selecting molecules perpendicular to

the direction of the q vector (for details, see supplementary

material Fig. S3). The resulting line of molecules is shown in

Fig. 23. While arranging the molecules in such a way reveals

the lack of translational symmetry in the crystal very clearly, it

is not the most convenient way to visualize the change of the

intramolecular geometry with t. For this purpose it is much

more illustrative to export the coordinates of the individual
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Table 4
Selected torsion angles (�).

Mean Minimum Maximum

N11—C10—C09—C16 �26.27 (17) �28.47 (17) �24.28 (18)
C10—N11—C15—C16 23.32 (18) 22.48 (18) 24.54 (18)

Figure 23
Alternative way of presenting the superstructure of VAR205. The 35
molecules of the asymmetric unit are shown along the direction of the
modulation. Note the sinusoidal spatial wave of the atoms and, as a
consequence, the missing translational symmetry: in a non-modulated
structure all molecules would lie perfectly behind each other on a straight
line.



molecule in suitable steps of t and create an animated gif of

these ‘snapshots along the fourth dimension’ (cf. Fig. 22).

4. Summary

The crystal structure of (6R,7aS)-6-(tert-butyldimethylsilanyl-

oxy)-1-hydroxy-2-phenyl-5,6,7,7a-tetrahydropyrrolizin-3-one,

a typical organic compound, has been successfully refined

using the superspace approach. This approach was introduced

in a non-mathematical way. All steps from data handling to

structure solution, refinement and presentation have been

discussed in detail.

The description of the diffraction pattern in (3 + 1)-

dimensional superspace delivered a unique indexing of the

peaks, the final model during structure refinement was based

on 1396 parameters with a data-to-parameter ratio above 20.

Looking at the structure, the three individual molecular

fragments act as rigid units, while the overall shape, or

conformation, of the molecule varies significantly with the

phase of the modulation t. This variation is reflected in the

torsion and dihedral angles between these rigid units and in

the intermolecular distances. Nevertheless, all parameters

associated with intra- and intermolecular geometry corre-

spond to values and distributions found for similar molecules

in the Cambridge Structural Database (Allen, 2002).

In contrast, treating the structure as a superstructure

(approximation) resulted in a series of problems: while

indexing the diffraction pattern, it was not clear whether a

7 	 5-fold or a 7 	 8-fold supercell should be used. In the

structure refinement, because of the large number of mole-

cules in the asymmetric unit (35 and 56, respectively) and

because of the large number of unobserved reflections, the

data-to-parameter ratio was very poor. For anisotropic

refinement 7560 parameters have to be considered for the

7 	 5-fold and 12 096 for 7 	 8-fold superstructure. Reason-

able geometric parameters and anisotropic displacement

parameters can only be obtained by employing large numbers

of restraints.
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